Frontier of
Embodiment Informatics:
ICT and Robotics

Top Global University Project: Waseda Goes Global - A Plan to Build a
Worldwide Academic Network that is Open, Dynamic and Diverse

International Workshop on A Strategic Initiative of Computing: Systems and Applications (SISA): Integrating HPC, Big Data, AI and Beyond

Rick Stevens

Professor Rick Stevens

Associate Laboratory Director, CELS, Argonne National Laboratory
Professor, Computer Science, the University of Chicago

Biography:

Since 1999, Rick Stevens has been a professor at the University of Chicago and since 2004, an Associate Laboratory Director at Argonne National Laboratory. He is internationally known for work in high-performance computing, collaboration and visualization technology, and for building computational tools and web infrastructures to support large-scale genome and metagenome analysis for basic science and infectious disease research. He teaches and supervises students in the areas of computer systems and computational biology. He co-leads the DOE national laboratory group that has been developing the national initiative for Exascale computing.

Stevens is principle investigator for the NIH/NIAID supported PATRIC Bioinformatics Resource Center which is developing comparative analysis tools for infectious disease research and serves a large user community. Stevens is also the PI of The Exascale Deep Learning and Simulation Enabled Precision Medicine for Cancer project through the Exascale Computing Project (ECP), which focuses on building a scalable deep neural network code called the CANcer Distributed Learning Environment (CANDLE) to address three top challenges of the National Cancer Institute. Stevens is also one of the PIs for the DOE-NCI Joint Design of Advanced Computing Solutions for ancer project, part of the Cancer Moonshot initiative. In this role, he leads a pilot project on pre-clinical screening aimed at building machine learning models for cancer drug response that will integrate data from cell line screens and patient derived xenograft models to improve the range of therapies available to patients.

Over the past twenty years, he and his colleagues have eveloped the SEED, RAST, MGRAST and ModelSEED genome analysis and bacterial modeling servers that have been used by tens of thousands of users to annotate and analyze more than 250,000 microbial genomes and metagenomic samples.

At Argonne, Stevens leads the Computing, Environment and Life Sciences (CELS) Directorate that operates one of the top supercomputers in the world (a 10 Petaflops/s machine called MIRA). Prior to that role, he led the Mathematics and Computer Science Division for ten years and the Physical Sciences Directorate. He and his group have won R+D100 awards for developing advanced collaboration technology Access Grid). He has published over 200 papers and book chapters and holds several patents. He lectures widely on the opportunities for large-scale computing to impact biological science.